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Abstract— In this supplementary material, we provide de-
tailed explanations on the utilization of the depth-based domi-
nant plane tracking method and line segment detection, along
with an illustrated analysis of the geometrical patterns of
sloping line normals on the Gaussian sphere. Additionally,
we present experimental results conducted in more large
and diverse indoor and outdoor urban environments. These
experiments demonstrate that the proposed SLOPe method
enables 3D inter-floor navigation in urban settings, surpassing
the limitations of 2D intra-floor navigation commonly associ-
ated with various robotics platforms, by leveraging consistent
and repetitive slopes in large-scale environments. We further
evaluate the robustness and sensitivity of the SLOPe method
to noise using synthetic line data. Implementation details and
runtime analyses of the key components are also reported.
Finally, we provide a performance comparison between the
proposed SLOPe method and existing approaches, including
LIMAP with depth information and the mixture of Manhattan
frames-based SLAM.

I. DETAIL ON DEPTH-BASED DOMINANT PLANE
TRACKING AND LSD THRESHOLD.

When the tracking of the dominant plane sometimes fails,
our SLOPe method finds and re-initializes a new dominant
plane by analyzing the density distribution of the surface
normal vectors from the depth camera (see Fig. 1), as
proposed in our previous work [1]. In more detail, if the
density distribution of the surface normal vectors around
the currently tracked normal vector is too low, we re-
initialize and detect a new dominant plane again with plane
model-based RANSAC. We assign the normal vector of the
new dominant plane to the closest axis in the SFW under
the assumption that the SFW does not change too much
between subsequent frames. Through the association with
the previously tracked SFW frames, we can continuously and
stably track the absolute 3-DoF orientation of the camera.

Since we have the SFW model (a kind of 3D orientation
map for space) from the SFW detection step, our proposed
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method does not experience sudden and unexpected jumps in
the prediction of dominant directions and of the 3D compass.
Our SLOPe method also ensures smooth 3-DoF rotational
motion tracking, preventing any potential jumps that can
occur through the Kalman filter.

For the line segment detection, the horizontal and vertical
lines that are visible to humans are sometimes not detected
well by LSD [2] as shown in Fig. 2 because either the lines
are too short or due to a uniform pattern and homogeneous
features around the steps of the staircases. While adjusting
the minimum line length threshold of LSD in Fig 2, we
can detect more horizontal and vertical lines. However, short
lines do not contribute to identifying structural patterns
within the image, which is why we consistently set the LSD
length threshold to 300.

II. GEOMETRICAL PATTERNS OF SLOPING LINE
NORMALS ON THE GAUSSIAN SPHERE

Let us assume that we have non-Manhattan frame lines
after the non-Manhattan frame lines filtering. We aggregate
all the sloping line normals that follow distinct SDDs to
maximize the number of inliers. We leverage the following
two properties of SFW for the aggregation. For simplicity,
we express the VDD, PHD, AHD, and the four SDDs in
mathematical symbols as v, hp, ha, and sn as illustrated in
Fig. 3(a).

Symmetricity. In Fig. 3(c), the dominant planes of s1 and
s2 are symmetric with respect to the ha and the v. The s3
and s4 dominant planes are symmetric with respect to the
primary horizontal direction hp and v in the same sense.

Quarter-Turn Relation. In Fig. 3(d), the s1 and s3 dom-
inant planes, and the s2 and s4 dominant planes, are related
by a 90-degree rotation around v, respectively. By fully

exploiting the geometric properties of SFW and aggregating
sloping line normals onto a single dominant plane, we
overcome the sparsity of line features, achieving effective
and robust SFW detection.

III. DEMONSTRATION OF MORE EXPERIMENTS IN
LARGE INDOOR AND OUTDOOR ENVIRONMENTS, AND

SOME FAILURE CASES

The ultimate goal of the proposed SLOPe method is to en-
able 3D inter-floor navigation in urban areas rather than be-
ing limited to 2D intra-floor navigation of various robotics
platforms by effectively utilizing consistent and repetitive
slopes in indoor/outdoor environments where slopes exist.
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figure_rebuttal_dominant_plane_tracking

Fig. 1. Dominant plane detection and tracking. Clustered lines and tracked dominant planes are overlaid on the RGB images for each sequence,
Half-Turn Stair and Quarter-Turn Stair, respectively. Our SLOPe method can adaptively change the dominant plane being tracked depending on the current
situation.
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Fig. 2. Comparison results for each LSD length threshold. The number
below indicates a minimum line length threshold used to filter line segments
based on their squared line length. We have set this threshold to 300, and
while lowering it results in more lines being detected, shorter lines provide
less robust directional cues and are not useful at all.
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Fig. 3. Geometrical patterns of sloping line normals. Sloping line
normals are aligned with four distinct sloping dominant planes, represented
as great circles on the Gaussian sphere. The colors of the sloping dominant
planes in (b),(c), and (d) indicate the respective color of vanishing direction
for the sloping lines illustrated in (a).

TABLE I
ABSOLUTE ROTATION ERROR ON ADDITIONAL EXPERIMENTS

Sequence ARE
(a) Parking Building 1.62◦
(b) Indoor GIST S1 Building 1.79◦
(c) Outdoor Fire Escape Staircase 2.09◦
(d) Outdoor Pedestrian Bridge 2.32◦

The proposed San Francisco world (SFW) is an optimal
structure model, especially when consistent slopes and ramps
are repeatedly observed, which are easy to find around us. In
most ordinary buildings, the slope angle of stairs and ramps
is quite regular and consistent. Our proposed SLOPe aims to
improve the accuracy of positioning and rotational motion
tracking in VO/SLAM by further simplifying it over Hong
Kong world (HKW) [3].

In particular, the staircase environment within a building
is very tricky, and it is challenging to apply SLAM skills
like loop closure because similar images are continuously
repeated. Staircases exist in all buildings, and they are spaces
that must be passed through to move between floors. Without
the help of loop closure in VO/SLAM in these staircase
environments, position and rotation drift errors will accumu-
late over time [4], ultimately leading to overall positioning
failure. Therefore, for various robotics platforms such as
quadruped robots [5] and nano drones to freely navigate and
explore between floors, it is essential to utilize the slope
angles such as stairs and ramps, and we try to tackle this
point with the proposed SFW and SLOPe method.

To demonstrate the generality and usefulness of our SFW
model and the SLOPe method, we have performed additional
experiments on more diverse and larger indoor/outdoor en-
vironments where slopes exist, satisfying the proposed SFW
model as shown in Figs. 4 and 5. We utilize the same iPhone
device and custom iOS app described in the manuscript to ac-
quire various kinds of data, such as synchronized RGB/depth
image sequences and Apple ARKit (VIO) camera poses.
Since the accuracy and stability of Apple ARKit (VIO) are
very high in a short period of time [6], we consider the 3-DoF
rotational motion from Apple ARKit as the ground-truth, and
evaluate our method quantitatively.

Our additional test scenes shown in Fig. 4 include various
indoor/outdoor environments with slopes that we can easily
find around us, such as (a) a parking building, (b) an indoor
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Fig. 4. Various indoor and outdoor scenes with slopes around us. Diverse indoor/outdoor environments with slopes that meet the proposed SFW
model: (a) a parking building, (b) an indoor GIST S1 building, (c) an outdoor fire escape staircase, and (d) an outdoor pedestrian bridge. They involve
complex camera translations, rotations, and numerous outlier line features.
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Fig. 5. Our SLOPe results on additional experiments. Clustered lines and tracked dominant plane with inferred SFW frame are overlaid on the RGB
images (top). Colored thick and thin lines denote the estimated 3-DoF camera orientation and the MW (VPs), and the black lines represent the true pose
of the camera from Apple ARKit (bottom).



GIST S1 building, (c) an outdoor fire escape staircase, and
(d) an outdoor pedestrian bridge, involving complex camera
translations and rotations, as well as numerous outlier line
features. The proposed SLOPe method effectively leverages
such consistent and repetitive slope information to achieve
drift-free 3-DoF rotational motion tracking as shown in
Fig. 5. Our SLOPe method can accurately track the 3-DoF
rotational motion not only on the stairs but also on the
parking lot ramp and the corridors between stairs. Table I
shows the quantitative results of the absolute rotation error
(ARE), which is about two degrees on average. Please refer
to our project page at https://SanFranciscoWorld.
github.io/ for supplementary video clips of each se-
quence in the additional experiments.

Although the proposed method performs highly robust
rotational motion tracking in most urban areas with slopes,
it does not always succeed in every environment. We present
some failure cases in Fig. 6. For example, our method fails
when no lines align with the initialized SFW frame or when
there is a sizeable angular difference between the sloping
lines.

We have also plotted boxplots of all the sequences in the
GIST-SFW dataset in Fig. 7, showing similar trends to Fig.
13 (b) in the manuscript. Note that the TAMU dataset [7]
does not provide a variety of SFW scenes and true 3-DoF
rotational motion, making it unsuitable for precise rotational
motion tracking evaluations. Recognizing the lack of ap-
propriate datasets for evaluating VO/SLAM algorithms, we
create and propose our own GIST-SFW dataset specifically
designed for these purposes.

IV. STUDY ABOUT SENSITIVITY AND ROBUSTNESS TO
NOISE FOR OUR SLOPe METHOD.

We have performed additional experiments to evaluate the
sensitivity and robustness of the proposed method against
noise with synthetic line data, especially for lines following
the sloping directions. We synthesize several 3D lines aligned
to the SFW and project them on the virtual image plane to
generate lines satisfying the SFW model (red, green, blue,
and magenta) as shown in Fig. 8. We perturb the endpoints
of the lines following the sloping directions by a zero-
mean Gaussian noise. Then, we synthesize the noisy lines
(magenta) by randomizing their endpoints within the image,
as shown in Fig. 8.

Figs. 9 and 10 show that the proposed SFW detection and
tracking methods have an error of less than one degree even
when a variance of about five degrees occurs.

V. IMPLEMENTATION DETAILS AND RUNTIME ANALYSIS
OF KEY COMPONENTS OF THE PROPOSED METHOD

We have implemented and tested the proposed SLOPe
method in MATLAB R2023b on a desktop computer with
an Intel Core i5-12400F (2.50 GHz) and 32 GB memory. It
also has a graphic card with NVIDIA GeForce RTX 3060
to run only deep learning-based methods such as DROID-
SLAM and LIMAP (DeepLSD [8]). No special MATLAB
code optimization or parallelization was done.

TABLE II
RUNTIME ANALYSIS OF PROPOSED SLOPe

Module Runtime

Preprocessing (Line Detection) 49.69 ms
Surface Normal & Mean Shift 10.02 ms

Initial MW Detection 6.67 ms
SFW Detection 1.51 ms
SFW Tracking 1.69 ms

TABLE III
LIMAP ARE RESULTS WITH/WITHOUT DEPTH MAP

Sequence SLOPe LIMAP w/o Depth LIMAP w/ Depth

Half-Turn Stair 180 0.68 1.00 1.06
Half-Turn Stair 360 1.19 1.92 1.38
Quarter-Turn Stair 180 0.96 1.02 1.12
Quarter-Turn Stair 360 1.21 1.79 1.41

We have analyzed the runtime of each module that con-
stitutes the proposed method as shown in Table II. First, the
image processing, such as line detection with LSD [2], takes
the longest runtime in the proposed method, about ∼ 50 ms
for the 15 image lines. Note that the computational load of
image processing such as line detection (LSD [2]) can vary
significantly depending on various conditions such as input
image size, the length of the detected line, etc. Then, we
compute surface normals from the depth images and track
the dominant plane, taking ∼ 10 ms. Initial MW detection,
finding the SFW model, and tracking the corresponding SFW
frames take about ∼ 7, 2, 2 ms, respectively. Overall, the total
computation time of the proposed SLOPe method, excluding
image processing such as line detection, is about ∼ 20 ms
per image frame, suggesting a computational improvement
of the proposed method when implemented in C/C++.

VI. PERFORMANCE COMPARISON WITH LIMAP WITH
DEPTH INFORMATION AND MIXTURE OF MANHATTAN

FRAMES-BASED SLAM.

Table III shows the absolute rotation error (ARE) of the
proposed SLOPe and the LIMAP depending on whether
depth is used or not. Although the use of depth in LIMAP
slightly improves performance by about 0.2 degrees on aver-
age, the proposed SLOPe method is still the most accurate.
Note that LIMAP with depth maps sometimes fails when
the depth map is sparse due to the limited range of RGB-
D camera or when line feature matching fails as shown in
Fig. 11. In these cases, we exclude such RGB/depth image
frames and rerun LIMAP. On the other hand, the proposed
method does not fail because we extract lines from RGB
images and track the dominant plane from the depth maps
complementarily.

We also have compared our SLOPe method to the Man-
hattanSLAM [9], which is a point, line, and plane-based
SLAM technique leveraging a mixture of Manhattan frames,
and the results are shown in Fig. 12. ManhattanSLAM is
designed based on the ORB-SLAM [10], with additional
detection and tracking of the Mixture of Manhattan Frames
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Fig. 6. Examples of some failure cases. The frames marked in red indicate those with an error greater than five degrees. In (a) at frame 155, the red
line contains redundant information for the same direction as PNV and is therefore useless. This results in the use of a blue line unrelated to the SFW
frame, leading to a large error. In (b), the sloping angle at frame 9 differs from that at frame 953 by more than three degrees, resulting in a large error. In
both cases, however, we can observe that the correct absolute camera orientation is tracked again in subsequent frames.

(a) Half-Turn Stair 180º (b) Half-Turn Stair 360º 

(c) Quarter-Turn Stair 180º (d) In-Place Rotation

figure_rebuttal_boxplot_others

Fig. 7. Boxplots of all the sequences in the GIST-SFW dataset. Comparison of the proposed SLOPe versus other rotational tracking methods. The
statistical distribution of the absolute rotation error (ARE) from other sequences in our own GIST-SFW dataset.
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Fig. 8. Synthetic line dataset with added random noise. Synthetic line data for robustness analysis of our SFW detection and rotation tracking methods
to noise. We incrementally add random noise to lines (magenta) following the dominant sloping direction. The numbers below images are the standard
deviation of the added random noise from 0 degrees (true) to 12 degrees (very noisy).
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figure_rebuttal_noise_SFW_detection

Fig. 9. Study about sensitivity and robustness to noise for our SFW detection. (a) shows the synthetic line data (top) when the standard deviation
of the random noise applied to the sloping lines is about five degrees and the estimated sloping parameters found by the proposed MnS method (bottom).
(b) illustrates the tendency of sloping parameter estimation error according to the added random noise from 0 degrees (true) to 8 degrees (very noisy).
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Fig. 10. Study about sensitivity and robustness to noise for our SFW tracking. Robustness analysis to noise for our 3-DoF rotational motion tracking.
Tracking is performed using magenta-colored sloping lines along the yellow path.

when sufficient orthogonality is observed between lines and
planes. The biggest drawback of MMW compared to the
proposed SFW is its high DoF. A new MW needs to be
generated for each slope angle, meaning three new MWs
should be initialized and tracked even for just climbing
one floor. However, in texture-less environments like in-
door/outdoor staircases and slopes, there are generally not
enough directional features or lines in the slope direction
(due to the lack of texture), making detecting, initializing,
and tracking new MWs difficult. As a result, the slope angle
direction cannot be effectively utilized. In Fig. 12, in texture-

less environments such as climbing stairs, only point feature-
based ORB-SLAM is operational, which results in overall
performance similar to ORB-SLAM3.
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Fig. 11. Example of failure of LIMAP leveraging depth map. In environments with few features, if the depth map becomes partially sparse, LIMAP
sometimes fails due to the inability to match the surrounding 3D lines (highlighted in yellow) near the affected pixels.

(a) ManhattanSLAM on GIST-SFW Dataset (b) Texture-less Stair Scenes
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Fig. 12. A demonstration of Manhattan SLAM, a SLAM system based
on Mixture of Manhattan World, running on GIST-SFW. (b) In the
texture-less stair scene, sloping lines are not effectively utilized, resulting
in the failure to detect a new Manhattan frame; only point feature-based
ORB-SLAM is used.
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